Bc∞ Calogero-moser Operator and Super Jacobi Polynomials

نویسنده

  • A. N. SERGEEV
چکیده

An infinite-dimensional version of Calogero-Moser operator of BC-type and the corresponding Jacobi symmetric functions are introduced and studied, including the analogues of Pieri formula and Okounkov’s binomial formula. We use this to describe all the ideals linearly generated by the Jacobi symmetric functions and show that the deformed BC(m, n) Calogero-Moser operators, introduced in our earlier work, appear here in a natural way as the restrictions of the BC∞ operator to the corresponding finite-dimensional subvarieties. As a corollary we have the integrability of these quantum systems and all the main formulas for the related super Jacobi polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibria of ‘Discrete’ Integrable Systems and Deformation of Classical Orthogonal Polynomials

The Ruijsenaars-Schneider systems are ‘discrete’ version of the Calogero-Moser (CM) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e±β p (β′ is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruij...

متن کامل

Polynomials Associated with Equilibrium Positions in Calogero-Moser Systems

In a previous paper (Corrigan-Sasaki), many remarkable properties of classical Calogero and Sutherland systems at equilibrium are reported. For example, the minimum energies, frequencies of small oscillations and the eigenvalues of Lax pair matrices at equilibrium are all “integer valued”. The equilibrium positions of Calogero and Sutherland systems for the classical root systems (Ar, Br, Cr an...

متن کامل

Calogero–moser Operators in Infinite Dimension

Various infinite-dimensional versions of the Calogero–Moser operator are discussed. The related class of Jack–Laurent symmetric functions is studied. In the special case when parameter k = −1 the analogue of Jacobi–Trudy formula is given and the relation with representation theory of Lie superlagebra gl(m, n) is discussed.

متن کامل

Calogero-sutherland-moser Systems, Ruijsenaars-schneider-van Diejen Systems and Orthogonal Polynomials

The equilibrium positions of the multi-particle classical Calogero-Sutherland-Moser (CSM) systems with rational/trigonometric potentials associated with the classical root systems are described by the classical orthogonal polynomials; the Hermite, Laguerre and Jacobi polynomials. The eigenfunctions of the corresponding single-particle quantum CSM systems are also expressed in terms of the same ...

متن کامل

Generalised discriminants, deformed quantum Calogero-Moser system and Jack polynomials

It is shown that the deformed Calogero-Moser-Sutherland (CMS) operators can be described as the restrictions on certain affine subvarieties of the usual CMS operators for infinite number of particles. The ideals of these varieties are shown to be generated by the Jack symmetric functions related to the Young diagrams with special geometry. Combinatorial formulas for the related super-Jack and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008